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The Cauchy problem for a system of ordinary differential equations is formulated as a problem of continu- 
ation on the best parameter. It is proved that the length of an integral curve of the problem is such a 
parameter. The merits of the proposed transformation are demonstrated by a test example in which a stiff 
system of equations describing the perturbed motion of an aircraft is solved numerically. 

Many problems in the mechanics of rigid deformable bodies reduce to the solution of a system of non- 
linear algebraic, transcendental, differential or integral equations explicitly involving a parameter. The 
most widely used way of analysing the solutions of such systems is to trace how the solutions vary as a 
function of the parameter. Quite naturally, implementation of this approach involves continuation of 
solutions of the non-linear equations as functions of the parameter; that this can indeed be done is 
established by the implicit function theorem and its generalizations. 

The effectiveness of any method for continuation of a solution depends on the successful choice of 
the continuation parameter. It was suggested in [l] that the length of the curve constituting the set of 
solutions of the system of equations is a satisfactory continuation parameter. 

Riks [2] formulated the problem of choosing a continuation direction that will optimize the 
conditioning of the linearized system of equations. As a measure of conditioning Riks took the 
determinant of the system divided by the product of the squared norms of its rows. He was able to 
show that the system is best conditioned when the solutions are continued along a tangent to the curve 
of the set of solutions, thus supporting the suggestion made in [l]. 

A special case of this problem has been investigated [3], and the optimal continuation parameter 
thus obtained has been used to solve several specific problems of non-linear deformation. 

In this paper we carry out a more detailed investigation, establishing necessary and sufficient 
conditions for the choice of the best continuation parameter. The results will be used to formulate a 
Cauchy problem which has several advantages. 

1. Consider the solution of a system of n non-linear equations in II 
parameter p 

Fi(Xiy*.., x,,p)-0, j-1,2 )..., n 

We will write this system in a form which stresses the equivalence . . 

unknowns x1, . . . , x, and a 

(1.1) 

of the unknowns xi and the 
parameterp, by working in Euclidean (n + 1)-space R”+‘: {xi, x2, . . . , x,, x,,+~ = p}. In this space the 
system of equations (1.1) may be written in the form 

F&q, . . ..x.,+,)=O (1.2) 

The set of solutions of this system obtained by allowing the parameterp to take different values is 
a curve in the space R”+i, which we will henceforth refer to as the solution set curve of system (1.2). 
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We shall assume that this curve is smooth. A solution of system (1.2) will be sought by the 
continuation method. It was pointed out [3J that continuation of a solution may be either discrete or 
~nt~uous. In either case, however, the problem reduces at each stage of the ~ntinuation to solving 
a system of linear algebraic equations whose matrix is the Jacobian of system (1.2). Failure to converge 
in a numerical method may be related to the vanishing of the Jacobian, i.e. to the conditioning of the 
system of linear equations. 

The probIem amounts to choosing a parameter for the continuation of the solution in such a 
way as to ensure that the system is as well-conditioned as possible. Our candidate for the roIe of 
~ntinuation parameter will be a quantity p whose increment is assumed to be a linear combination 
such as 

A~==j~i, i=l,2,...,n+I (l-3) 

Throughout this paper we shall use the summation convention for repeated indices. 
Varying the sequences of numbers c+, we can consider all the possible ~ntinuation parameters. For 

example, if 01~ = a2 = . . . = & = 0, s,,~ = 1, the parameter will be the problem parameter 
p = x,,,~. If we define a vector OL = (ccl, . . . , G+# in Pfl, it follows from formula (1.3) that the 
increment of p is the scalar product of the vectors (Y and Ax = (A.X~, . . , , ,I\X,+# E R”+l: AWL = a . Ax. 

According to the representation (1.3), a defines the direction in which the continuation parameter 
should be chosen. Thus, if Q is taken to be the Kronecker delta a+, = S,, then a is the unit vector along 
the xk axis along which the ~ntinuation parameter has been chosen. Henceforth we shall indeed 
specify this direction by the unit vector a. 

Equations continuing the solution as functions of a parameter p will be constructed by 
differentiating equations (1.2) with respect to the parameter, on the assumption that Xi = Xi(p), and 
then letting Ap -+ 0 in (1.3) divided by Ap. This gives a system of linear equations for the components 
of the vector xi, p = &Up = (x~,~; , . . x,.,_~,~)~ 

aI a2 ... a,+, %P 1 

F 1.1 4.2 ..* 4,n+l x2.p 0 
= 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

F n,f 42 ... &>,+I -G+I,R 0 

(1.4) 

The index following the dot in the element Fj,i indicates the component with respect to which the 
differentiation is performed. 

By an optimal continuation parameter we mean a parameter for which the linearized system (1.4) 
is best conditioned, in the sense that small variations of the matrix elements and the right-hand sides 
of the system will cause the smallest variations of the solution. We shall show that the path length h of 
the solution set curve of system (1.2) is an optimal parameter. The measure of conditioning of system 
(1.4), which we denote by D, will be the determinant of the system divided by the product of the 
squared norms of its rows [2]. By Hadamard’s inequality for determinants, 10 1 E [0, 1 J. It has been 
shown [4] that the maximum value of 10 1 indicates the best conditioning of the system of equations. 
In the present case one can prove the following assertion. 

Lemma 1. The absolute value of the determinant of the system of equations (1.4), divided by the 
product of the squared norms of its rows, achieves its maximum value when the vector a is tangent to 
the solution set curve of system (1.2) at each point of the curve. 

proof. Letting A denote the determinant of system (1.4), let us investigate the function D = A/d for an 
e~remum, where 

A = (-l)j+’ CY.i Ai (1.5) 

(1.6) 
i-i 
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(no summation over p), with tr = (a&” = 1 since a is a unit vector. Consequently, d is independent of a+ 

To find an extremum of the function D provided that a is a unit vector, we construct the Lagrange function 

LI(-l)“‘aiAild+y(l-aiai), i-1,2,...,n+l 

where 7 is an undetermined Lagrange multiplier. The extremum of this function is achieved at t& = 

(-l)k+&/(23tf) (k = 1,2,. . . , n + 1). Using the equality qc~ = 1, we determine the Lagrange multiplier. Thus, 

an extremum of the Lagrange function is reached at 

at - rt(-I)k+‘Ak l(AiAi)’ 

Substituting this expression for c~ into (l.S), we see that the determinant of system (1.4) must satisfy the 

equality 

A = *(AiAi)K (1.7) 

and the Lagrange function attains its extremum when 

ak-(-l)k+‘Ak/h-d.xkldp (1.8) 

The Lagrange multiplier is then equal to 

y=4Qd)=D/2 

Analysis of the second differential of the Lagrange function as a quadratic form in the differentials d% shows 

that the absolute value of the function D = A/d will then take its maximum value ID 1 = (A&?d. Indeed, the 
sign of the second differential of the Lagrange function 

d*L = -2y(daidai) 

is determined by the Lagrange multiplier ‘y, which is positive if D > 0, and so D takes its maximum value. The sign 
of y is negative if D < 0, in which case D takes its minimum value. 

We have thus proved that the vector OL, which determines the continuation parameter u by (1.3), 
makes D take its largest possible value when it is a solution vector (Q; . . . , x”+~,$ of the linearized 
system (1.4), i.e. when a points along the tangent to the solution set curve of system (1.2). 

Let us examine the effect of perturbing the elements of the matrix of system (1.4) on its 
conditioning. 

Lemma 2. The quadratic error in the solution of system (1.4) due to perturbation of the elements of 
its matrix is least when the vector a points along the tangent to the solution set curve of system (1.2) 
at each point of the curve. 

Proof. Suppose that the iirst row in the matrix of system (1.4) is given with an error. Let a have the form 

(al, . . . , o&l, 9 + a, Qj+1, f * . 9 o,,+r)r. The determinant 4 of the system can be expressed in terms of the 
determinant A of the original system 

A, I A+(-l)j+‘sAj -A(l+(-l)‘+‘Ajs/A) 

Since we are considering small perturbations E, the components of the perturbed solution yi,p may be written in 
the form 

yi,c = (-l)‘+‘Ai / AE - (-l)i+’ Ai I A(1 -(-l)j+t EAT I A) 

Then the components Si of the error vector S = (6,, . . . , 6n+l)T of the solution of the perturbed system may be 
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calculated using the formulae 

6, I ~i,~ - ~i,~ = (-l)i”” EAj Ai I A2 

Let us investigate the squared error 6 = e2A$AJA4 for an extremum, on the assumption that a is a unit vector. 
The Lagrange function may be written in the form 

This function is a minimum when 

at -2E*A~AiAi(-l)"'A~/(yd), k=1,2,...,n+l (1.9) 

Dividing the kth equation of these relations by the mth, we obtain an equality which enables us to express a,,, in 

terms of % 

a,,, I (-l)m-‘akA, I A, (1.10) 

Then the determinant (1.5) of system (1.4) may be written 

A - (-l)m-lamAAI = (-l)- k-l arA,A, I At 

m = 1.2, . . ., n + 1. 

In that case the system of equations (1.9) is easily solved for a;k 

( 2aA; \’ 
Q& =I y(A,A,)4/ (-e+'Ak 

(1.11) 

(1.12) 

Note that there is no summation over k in (1.10) and (1.11). 
lb find the Lagrange multiplier ‘y, we substitute (1.12) into the equality WC+ = 1. Then y = 2t?A~/(AmAm), and 

formula (1.12) becomes 

ok =(-lfk+‘Ak /(A,,,A,)’ (1.13) 

Substituting these values of & into (1.5), we see that A = (bmAm)‘/2, and equalities (1.13) are identical with the 
equalities for dq/dp, i.e. equalities (1.8) are true, which it was required to prove. 

Let us study the effect of ~~~~g the ~~t-h~d sides of system (1.4) on its ~ndition~g. 

Lemma 3. Tire squared error in the solution of system (1.4) due to perturbation of the right-hand 
sides of the system is least when the vector OL points along the tangent to the solution set curve of 
system (1.2) at each point of the curve. 

Pnwf. Suppose the vector of the perturbed right-hand side of system (1.4) has the form (1 + E, 0,. . . , O)? Then 
thee~rv~r~~g=~(x~~;..., x,+i,Jr and the squared error becomes 

s2 =s2AiAilA2, ipI, ,..., n+l 

Defining the Lagrange function as 

and looking for its extremum as described in the previous lemmas, we see that the components of the vector must 
satisfy equalities (1.8) at an extremum point, which proves the lemma. 

We can now finally prove the following theorem. 
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Theorem. The system of linearized equations (1.4) is best conditioned if and only if the continuation 
parameter for solutions of the system of non-linear equations (1.2) is the path length of the solution 
set curve of the latter system. 

Prooj Necessity. According to our definition of conditioning, Lemmas l-3, taken together, state the 
following: the system of linear equations (1.4) is best conditioned when the vector OL points along the 
tangent to the solution set curve of the non-linear system (1.2) at each point of the curve, i.e. when 
equalities (1.8) hold. In view of this fact, the equality qq = 1 may be written in the form 

hw2 =dxidri, i=l,2 ,..., n+l (1.14) 

whence it follows that d, = @!x&JuL is the differential of the path length of the solution set curve of 
system (1.2). If we assume that the initial point of the curve is that corresponding to ~1 = 0, the 
continuation parameter will equal the length of the cmve measured from that point. This proves 
necessity. 

Sz.@ciency. We choose the path length of the solution set curve of system (1.2 to be the 
J continuation parameter p. The vector T tangent to the curve will be T = (~1,~; . . . , x,+l,J . As pointed 

out previously, the unit vector a determines the direction in which the solution of problem (1.2) is 
continued. Hence, by our special choice of continuation parameter, it must also point along the 
tangent to the solution set curve, i.e. the vectors a and I must be collinear. But they are also equal, 
since I is also a unit vector. Indeed, the differential of the continuation parameter, as an element of 
path length, must satisfy (1.14). If this equality is divided by (dl.~)~, we obtain 

Xi&&& =r2 -I, i-1,2 ,..., n+l. I 1 

Since the vectors are,equal, so are their components. The components dx&fp = xks for any continua- 
tion parameter p must satisfy the system of linear equations (1.4). 

Consequently, equalities (1.8) must hold. The left-hand sides of these equalities make the functions 
occurring in the lemmas reach their extremum values. This in turn ensures that system (1.4) is best 
conditioned, which it was required to prove. 

2. We will use this theorem to formulate a Cauchy problem for a system of ordinary d~erential 
equations 

An integral of this problem 

F,(LYI, ..-,y,,>=O W) 

defines a certain integral curve, whose construction may be interpreted as the process of continuing 
the solution y on the argument-parameter t. This interpretation enables us to consider the problem of 
how to choose the best parameter for the ~ntinuation of the solution, and hence of how to choose the 
best argument in problem (2.1). 

To solve the problem, let us assume that yi and t are functions of a certain parameter l.~ whose 
increment can be expressed at each point of the integral curve in the form 

A~=“iAyi +a,+,Ar, i~IlZt...,n cw 

where Ayi, Af are the corresponding increments. We have already discussed the meaning of the 
coefficients olj 0’ = 1,2, . . . , n + 1). 

Dividing (2.3) by Ap -+ 0 and noting that 

dyi / dt = (dyi / dct)(dt J dc1)-’ 
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we can express the solution of Eqs (2.3) and (2.1) in the form 

“iYi.p + an+lf,p * 6 Yi,p -fir+ = o P-4) 

(Yi., P dyi I dcr. t,r a dt I dl;l) 

System (2.4) may be viewed as continuation equations when constructing the solution set curve for 
system (2.2), which is an integral curve of problem (2.1). 

The theorem proved above states that system (2.4) will be best conditioned if the argument- 
parameter p is taken to be the path length h measured along the solution set curve of the system (2.2), 
i.e. along an integral curve of problem (2.1). 

In that case, taking (1.8) into consideration, we can write system (2.4) in the form 

This system is easily solved for yi, k, bk ~sumiog that the initial point of problem (2.1) corresponds to 
3, = 0, we obtain the following Cauchy problem 

dYi I dh = f; 1 (I + fjfi )’ I Yi (O) a YiO 

dtIdh=l/(l* fifi)“, t(O)-to, i,j=t,X...,n (2.5) 

In previous publications [5,&l we discussed some advantages of solving problem (2.5) compared with problem 
(2.1). A further advantage may be illustrated through the following model problem 

dy,idt=a,yl. dyzfdt=azyz P+Q 

where al, a2 are real numbers. A numerical solution of this problem will be sought using Euler’s method. 
We shall show that one can proceed from the initial point A&, ~10, ye)) of an integral curve to the final point 

B (see Fig. 1) in the minimum number of steps by varying the parameter X and not the parameter t. In other words, 
we shall show that at any point of the integral curve 

where 0 is the angle between the tangent to the integral curve and the t axis, H, and Hx are the least integration 
steps with respect to t and h at which the iterative process described by Euler’s formula ceases to converge. 

The explicit scheme of Euler’s method for equation (2.6) is 

(h, is the integration step length with respect to t). This scheme will be stable if 1 1 f hpi 1 c 1, i.e. for ai < 0 

H,=-2/al, al <a2 P-9 

~~~o~~g problem (2.6) to the form (X5), we obtain a system of three d~erenti~ equations, in which the 
solution of the equation for t wiIl be determined by the solutions of the equations for the functions ye If these 
equations are linearized in the neighbourhood of some value yi = yi, [6], the condition or the transformed 
problem to be stable when a1 4 a2 becomes 

I1 +hx$lc 1; i, j - 1,2; i * j 

btij -u,cr+a~y~.,~(lca:Y~, +4Yz2,##J -x 

where hk is the integration step length for h. This inequality will be satisfied if ai c 0 and 

Hk = min(-2l “ii) 
i.j 

(2.9) 
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Fig. 1. 

shlcecose = (1 + &,,, + a@&-“, equalities (2.8) and (2.9) lead to a relationship that proves the truth of 

(2.7) and so demonstrates that the transformation proposed here is indeed effective. 

3. As a test example, let us investigate the solution of a stiff system of equations. Consider the steady, straight- 

line flight of an aircraft in a plane without slipping, assuming that the parameters experience a small deviation 
from their initial values. The linearized equations of the perturbed motion of the aircraft may be written as follows 

171: 

dyldr = AY, Y = 01. ~2. ~39 ~4)~ (3.1) 

-0.104 0.043 -0.1 0 

-0.57 -5.12 0 1 
A- 

0 0 0 1 

-12.574 -43.68 0 -9.672 

The first two equations of system (3.1) describe the longitudinal and transverse perturbations of the aircraft’s 

velocity, respectively. The last two equations describe the perturbation of the pitching angle. 
It can be shown that the matrixA of system (3.1) has the following eigenvalues: rl = 0.16, r2 = -0.265, ‘3.4 = 

-7.4 2 i6.2. Clearly, ]rr 1 < Ir-2 1 B ] r3 I = lr4 I, implying that the system is stiff. Previously, using the PC1 program 
described in [8], we integrated this system, with initial data 

Y l(O) = Y3@) = Y40 = 0, Y20 = 1 (3.2) 

Over the interval t E [0,5]. The computation required almost twice as much computer time compared with the 

solution of the same problem (3.1), (3.2) after a preliminary transformation to the form (2.5). 
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